REPORT

AFWL. (D

NASA CR-2003

PREDICTION OF UNSTEADY AERODYNAMIC
LOADINGS CAUSED BY TRAILING EDGE
CONTROL SURFACE MOTIONS

IN SUBSONIC COMPRESSIBLE FLOW —
ANALYSIS AND RESULTS

by W. S. Rowe, B. A. Winther, and M. C. Redman

Prepared by
THE BOEING COMPANY

Renton, Wash.
Jor Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C.

g

—_—
g
——
——
]
—

WN ‘@dvX AdvHEIT HO3L

ouL)

KIRTLAND AFB, N. M.

- JUNE 1972



TECH LIBRARY KAFB, NM

T

006LebS
1. I'\:e;;ort No. N 2. Government Accession No. - 3. Recipient’s Catalog No.
N NASA CR-2003
4. Title and Subtitle 5. Report Date
PREDICTION OF UNSTEADY LOADINGS CAUSED BY TRAILING EDGE CONTROL June 1972
SURFACE MOTIONS IN SUBSONIC COMPRESSIBLE FLOW - -~ ANALYSIS 6. Performing Organization Code
AND RESULTS
7. Autho_r(s) . 8. Performing Organization Report No.
W. S. Rowe, B. A. Winther, and M. C. Redman
10. Work Unit No.
9. Performing Organization Name and Address

114-08-05-02
11, Contract or Grant No.

The Boeing Company

Renton, Wash.

NAS1-10536
“13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C.
15. Supplementary Notes

16. Abstract

lifting surface loadings caused by motions of trailing edge control surfaces having sealed gaps.
The final form of the downwash integral equation has been formulated by isolating the singularities
from the non-singular terms and establishing a preferred solution process to remove and evaluate
the downwash discontinuities in a systematic manner. Comparisions of theoretical and experimental
pressure data are made for several control surface configurations. The comparisions indicate

that reasonably accurate theoretical pressure distributions and generalized forces may be obtained

for a wide variety of control surface configurations.

span can be accommodated.

A theoretical analysis and computer program have been developed for the prediction of unsteady

Spanwise symmetry or antisymmetry of motion, and up to four control surfaces on each half

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Flutter, Wing-Control-Surface Flutter, Unclassified-Unlimited
Aerocelasticity, Structural Dynamics,

Aerodynamics, Unsteady Aerodynamics

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price®

Unclassified Unclassified % $3.00

‘For sale by the National Technical Information Service, Springfield, Virginia 22151






CONTENTS

SUMMARY . . & v ¢ ¢« v v o ¢ v v 0 e e . e e e e e e et e e e e
INTRODUCTION . & & v v v v v v i v v e e e e e e s e e e e e e e
SYMBOLS v v v v v 6 v v i e e e e e e e e e e e e e e e e e o s

ANALYTICAL FORMULATION . . . . . .. e e e e e e e e e e
The Integral Equation and its Elements . . . . . e e e e e
Evaluation of the Dipole Term . . . . . . . . . . . C ot e e e e
Identification of Spanwise Singularities . . . . . . . . . . . ..
Preferred Solution Process . . . . . . . . .. .+ . .. e e
Pressure Distributions . . . . ¢« v v v v v v i h e e e e e e

Loading functions for the inboard partial-span
control surface . . ... . . ... e e e e e e e e e

Loading functions for the outboard partial-span
control surface e e e e e e e e e e e e e e e e e

Final Form of the Downwash Integral Equation . . . . . . . . . ..
Generalized Forces . . . . . . . . . . .. e e e e e e e e

PROGRAM CAPABILITIES AND LIMITATIONS . . . . . . . . . . v e e e

RESULTS, COMPARISONS AND DISCUSSION . . . . . . « « v v v+ « o ..
Description of Downwash Subtraction Process . . . . . . . . . . .
Steady-State Results for Full-Span Flap Configuration . . . . .
Steady-State Results for a Partial-Span Flap Configuration . . . .
Rectangular Planforms having Full-Span Control Surfaces
Effect of Hingeline Gaps on Chordwise Loadings . . . . . . . . ..
Side-by-Side Control Surface Configuration . . . . . . . . . . ..

CONCLUSION . . . . .« . v o o v v v v v
REFERENCES . . v v v v v v v o v v s v e v e v o v e e e

APPENDIX A - A CAUTION REGARDING PLANFORMS WITH DISCONTINUOUS EDGES,
AND A PROVISION FOR INCLUDING EFFECTS OF AIRFOIL THICKNESS VIA
LOCAL LINEARIZATION . . . . . . . « . . . . e v e e .

Modification of Planforms Having Discontinuous Shapes ......
Suggested Modification of Boundary Conditions w/V

33

35
37
42

46

48
48
51
53
54
57
58

62
63

65
65
71



PREDICTION OF UNSTEADY AERODYNAMIC LOADINGS CAUSED BY
TRAILING EDGE CONTROL SURFACE MOTIONS IN SUBSONIC
COMPRESSIBLE FLOW--ANALYSIS AND RESULTS

By

W. S. ROWE, B. A. WINTHER, and M. C. REDMAN
THE BOEING COMPANY

SUMMARY

A theoretical analysis and computer program have been developed for
the prediction of unsteady 1ifting surface loadings caused by motions of
trailing edge control surfaces having sealed gaps. The final form of the
downwash integral equation has been formulated by isolating the singulari-
ties from the non-singular terms and establishing a preferred solution
process to remove and evaluate the downwash discontinuities in a systematic
manner. Comparisions of theoretical and experimental pressure data are
made for several control surface configurations. The comparisions indicate
that reasonably accurate theoretical pressure distributions and generalized
forces may be obtained for a wide variety of control surface configurations.

INTRODUCTION

Historically, much effort has been expended to adapt conventional os-
cillating 1ifting-surface solution techniques to wings with control sur-
faces. Extensive use has been made of the reverse flow theorem (reference 1)
to construct an analytical upwash function that is used in reverse flow to
produce "equivalent" generalized forces. The generated upwash function is
obtained by the expedient of smoothing over, in one way or another, the
stope discontinuities and corresponding singularities within the pressure
functions. The "eguivalent" upwash function does not match the control sur-
face slope accurately at all points but does produce reasonable "indirect"
generalized forces. The usefulness of this method deteriorates when the
'direct' hinge-moment term is to be determined.



The work of reference 2 is one of the few subsonic methods developed
to determine the 'direct' surface loadings using pressure terms that are -
capable of correctly representing the known singularity functions around
the boundaries of the control surface. However, it was found that solu-
tions obtained from the method of reference 2 were highly sensitive to the
relative location and number of control point collocation stations used in
the analysis. The sensitivity may be attributed to the particular solution
process being applied that assumes that discontinuous downwash distributions
may be approximated by a 1inear combination of polynomial represented down-
wash sheets that satisfy the boundary conditions at a select set of control
points. Changing the control point locations by relatively small amounts
results in large changes in the unsteady loadings,consequently the method
requires calculation of downwashes at many stations and seeking solutions
in a least-squares-error sense.

Solution sensitivity remained until pressure distributions were de-
veloped (reference 3) that identify the functional distribution and singu-
larity strengths required to produce identical mathematical downwash dis-
continuities contained in the kinematic distribution. A preferred solu-
tion process was developed by subtracting the discontinuous mathematical
downwash distribution from the discontinuous kinematic distribution re-
sulting in smooth downwash distribution for which standard 1ifting-surface
solutions could be applied. The resulting loadings would then be relatively
insensitive to the locations and number of control points used in the
analysis.

The present work represents an extension of the analytical methods
suggested in reference 3 to provide a capability of numerically predicting
the unsteady loadings caused by control surface motions that is relatively
insensitive to locations of collocation stations on the surface. Documen-
tation of the computer program design, usage, and limitations is provided
in reference 4.
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SYMBOLS
A1l quantities are dimensionless except as indicated
Unknown coefficient of assumed pressure modes, equation 54
Local semichord |
Reference length
Local chord length nondimensional with respect to b0

Regular spanwise pressure difference distribution,
equation 55

Singular spanwise pressure difference distribution,
equations 38a and 47.

Regular chordwise pressure difference distribution,
equation 56

Singular chordwise pressure difference distribution,
equations 39 and 47

Mode shape of mode j, ﬁﬁ(x,y)bo

V-1

Kernel function, equation 6

Reduced frequency = S;Q

Mach number

Pressure on lower surface

Pressure on upper surface

Generalized coordinate amplitude for mode j

Generalized forces (see equation 84 for dimensions)

Sectional generalized forces (see equation 82 for dimensions)
ﬂ 2 2. 2

X T B Y,
Semispan

Nondimensional semispan, S/b0
Free stream velocity

Kinematic angle of attack or nondimensional normalwash

W

v

iwT
wj/qje



X,Y,Z [length] Dimensional Coordinates

X,Y» 2

X

x|

§ [radian]

A [radian]

aat

sN &

Mn.T

™|

o(n) [radian]

Coordinates nondimensional with respect to b0

(x = x.)/(b/b,)

X = X,

Nondimensional coordinate of the control surface hingeline
Nondimensional coordinate of the mid-chord line

Nondimensional coordinate of the leading edge

Nondimensional coordinate of the trailing edge

V1 - M2
\/32 + tan? A

Hingeline rotation angle measured in the plane perpen-
dicular to hingeline and positive trailing edge down

C

Nondimensional steady state pressure difference between
Tower and upper surfaces, (P, - P )/(p vZ/2)

In-phase part of the nondimensional pressure difference
Qut-of-phase part of the nondimensional pressure difference

Sweep angle of the control surface hingeline, positive
swept back

Dummy variables for (x,y,z)
Scaled dummy variables (see equation (30))
Rotation angle of control surface hingeline at (n),

measured in the plane perpendicular to the y-axis and
positive trailing edge up

p [mass/length3] Density of the fluid

T [time]
w [1/time]
UJ*

Time
Circular frequency of oscillation

Reduced frequency = k



ANALYTICAL FORMULATION
The Integral Equation and its Elements

The purpose of this report is to describe the procedures used in
calculating the generalized aerodynamic forces existing on a 1ifting sur-
face caused by control surface motions in subsonic flow. The analysis is
applicable to planform configurations having full span or multiple par-
tial span control surfaces located anywhere along the planform trailing
edge.

A typical partial span control surface configuration is shown in
figure 1 where the analysis coordinate system is defined.

t Z ////"Y,h
<

/?

%
\:,g

Figure 1.—Coordinate System Definition

Solutions are obtained through an evaluation of the downwash-pressure
integral equation that has been derived from the linearized potential
equation (1).

VB(x.y.2,t) - Ly (v + 292 @(xuy,2,t) = 0 (1)
a



The downwash-pressure integral equétion derived in reference 5 pro-
vides the basis for the analytical formulations used in developing nu-
merical methods for predicting unsteady loadings on lifting surfaces.

The form of the integral equation used throughout this discussion
is given as:

s X
— t
W 1
Mo 5 AP (&,n) K(x,£,y,n) de&d (2)
[V]J 4ﬂpv f_s fx J " " "
)

Equation (2) has been written using the subscript j to denote that
pressure distributions obtained by the solution process will be those nec-
essary to satisfy the boundary conditions of the jth deformation mode shape.

The pressure distribution APj(E,n) is the only unknown function within
the equation and is equal to the pressure difference between lower and

upper surfaces defined by:

WPi(en) = P, - P - (3)

The kinematic downwash* term [%]_ is developed on the basis of the
modal representation of the wing deflection Z for sinusoidal motion

—~ jwT (4a)
7 = Z Hi(x,y)a;e
J
and is defined as:

(4, - (7], o -

[BH.(x,y)
J J

Tt

where Hj(x,y) is the deflection shape of the jth mode and is in the

same dimensional units as bo and qj is dimensionless.

The subscript (j) is omitted in the remaining sections, up to the
section on generalized forces, with the understanding that the pressure

terms being determined are those terms necessary to satisfy the jth mode

Hj<x,y)] aze’" (ab)

<<|E

shape boundary conditions.
The K(x,&,y,n) term represents the kernel function of the integral

equation that describes the surface normalwash at (x,y) due to a pul-
sating pressure doublet located at (£,n) defined by:

* kinematic downwash has the opposite positive sense to that of
the resulting or caused downwash at the surface.
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K(X!E ,_st)

-iw 2 X-& iQZ(A—M A2+82(y—n)2+3222)dx
e —V(X-E)Hm 3 ] eVBZ - (5)
Z—~0 32Z ﬁ2+82(y n)?+8 4

Reduction of equation (5) into a form that may be easily evaluated
by routine numerical procedures was accomplished by Watkins, Runyan, and
Woolston (reference 6) and presented in non-dimensional form by consider-
ing the variable as beirg referenced to some chosen length and introduc-
ing the reduced frequency parameter k = —8—‘1

-ikx
0 :
0
h
1/2
-q f r/(1+12) / exp(ik|y | ) d'r]
0

, ' 1/2
-X / X 2+32_y 2y1/2 . exp %(XO-M(X 2+62y 2) )] (6)
8

2
where h = (XJM( 2+82y %) K )/BZ.VO

Equation (6) contains functions that are singular at the downwash
control point (x,y) and may cause numerical difficulties in evaluating
the integral equation. However, the singularities have been identified
and may be isolated in the following form:

K(X,E,y,n) = Kns (X,E,)’,n) + KS(X,E,ym) (7)

where Kns (x,&,y,n) is the non-singular part of
the kernel function
and the singular part is given by

-ikx 1/2 1/2
KglxsE,yom) = e ° { - —17 [on/(x 2+62y %) }+ ik/(x, +62y )
‘yO
2 ]/2 2
k 2 2 k 2 2,1
- n +a ) - /(g +8° Yo ) } (8)
7 (x Yo Xa ZB"Z[ o ; ]




Insertion of the above definitions into the downwash integral equa-
tion results in the following expression to be evaluated over the sur-
face to satisfy the boundary conditions.

41rpV fpr(E MK (x,E5ysn) dEdn

-ikx 2 1/2
-ffAD(E,n)e ° _]_2[“"0/(" 2+B"y 2) ]dﬁdn
y 0 0
0

1/2
+1kfpr(e,n)e % (x,“+8% °) /% 4gdn

K2 -1‘kx0 5
K [ opteime” om0 2Py B n | aeen (9)

2 -ikx
) —?f_[AP(Em)e ° [x /(x, 2vg? Yo 2) 2. M] dgdn

The first integral of equation (9) represents the contribution to
the downwash at the point (x,y) due to the non-singular part of the
kernel function. The general shape of Kns is usually quite smooth for
Tow values ngMach number reflecting the strong sinusoidal character-
istics of e ° in the expression. However, the chordwise characteris-
tics change quite rapidly for Mach numbers greater than M = 0.85 as is
demonstrated within figure 2 that shows the chordwise variation in the
imaginary part of KnS with Mach number.

The (x-g) coordinate of figure 2 represents the chordwise difference
between the pulse sending point located at (z,n) and the downwash station
(x5y).

Since the functional distributions of Kns are quite different forward
and aft of the downwash station the chordwise integration interval X< ESXy
js subdivided into two intervals X < E<X and xg E<Xy to provide an ac-
curate evaluation of the chordwise integral,



S [

(1)
ns
Mach Number for y-n = 0.05, k = 0.7854

Figure 2.- Chordwise Variation of K as a Function of

The second, third, and fourth integrals of equation (9) represent
downwash contribution due to the dipole, square root, and logarithmic
singularity terms respectively. The last integral does not contain a
singularity in the spanwise direction but does require special means to
evaluate its downwash contribution since a finite discontinuity exists for
values of n—»y.

Evaluation of the Dipole Term

The downwash contribution due to the dipole term is evaluated using
the method suggested by Hsu (reference 7). The dipole integral of equation
(9) is given as

S Xt -ik
wdp f / spleim)e O __LZ[1 + (x-E)/ [(x-s)2+82(y-n)2]”2]dedn (10)
) XZ (y-n)

where the form of equation (10) is obtained by developing the dipole expression
from a different viewpoint than taken by Hsu.



The dipole portion of the kernel function is developed by considering
the normalwash at a point (x,y,e) that is located just off of the surface
shown in figure 3.

Z
w
(x,Y,€)
(€,n,0) r
€
L |
A \ y
——————— ro ———l (X:H,O)

Figure 3.- Coordinate System Used in the Kernel Function Derivation

The kernel function describing the normalwash at (x,y,e) due to a

pressure pulse at (g,n,0) is given by

-ikx F1 3°E oE ]
= o] 1 "o ;2 o_1 "o
Kw = ¢ [ r ar Fsiny (ar2 r ar ) (1)
where
h
EO _ J’ e'lkA (r2 + X2)-]/2 da
h = 1/32 [x0 - MR], R = (x02+32r2)1/2 and Xy = X - €

The dipole portion of Ky is given by

-ikx
P = -e O L1+ x/RI-T + 2 siny) (12)
r

and may be put in a different form by using the geometric properties of
figure 3 given as:
2 2 2 2,.2 2)1/2

= + . = = - i = E . = +
r ’s €3 Ty =Y, =Y - and siny = Ro (x0 BT,

Then Kwdp takes on the definition

10



2 2
dp -ikx r T - € X
Ky = e O(L—+—272-['| +R_o+ 0(?)] (13)
r o

where the terms represented by 0(52)—-0 as e—0

The normalwash at (x,y,0) is obtained by a limiting process allowing
e—0 after the normalwash integral has been evaluated as indicated by

the following:
(g 2-e8)(s2a) X
WIP(x,y,0) = Tim f ey [ “2’(‘5 3)1/2 e KXo(14:9) dedn  (14)
w0 s ¥y tET) , (s ) 0
Following the development of reference 7, let G(x,y ,n) be the value
of the chordwise 1ntegra1 at

ikx
G(X,y,n) —95—1——,2 (1 + x /R,) de (15)

-n
as n—sy this becomes

Tim G(x,y,n) = G(X,y,y)
N~y
Then one of the singularities is subtracted from equation (14) to

provide the expression

s 2 2.,2 21/2
dp - 14 (y= -nZ)(s® -n7) G(X,¥,n) = G(X,Y,¥)
W% (x,y,0) = lim y L ] d
’ e—0| - ° (¥, 24 4t (y-n) "
,y,.V)f -€ ) 2 _n2)1/2/(y02 +€2)2 dn (16)

The finite part of the second integral is given as:

s
o f (v 2 -2y (s2 =) 5%+ &) dn = e
e—»0

Evaluation of the first integral would still have to be accomplished
by the use of Cauchy integrals, however this can be circumvented by sub-

tracting an additional singularity.

11



Define H(x,y,n) = (s? -nz)[G(x,y.n) - G(x5¥,¥)1/(y-n) (17)
and let

1im (52 _n2) JG(X,.V-T\) - G(x’.YLY)J

H(x,y,y) = (17-A)
n—>-y Y -n
= 157 - Y ) = - (s8R é—%[G(x,y,n)]Fy
;gf’n(x 0) = 14 : 2 y°2 i T _ Hixoysn) = H(X,y,y)
> —E_TO[J: Yo (yc,g + 2P (s a2 y -n - (18)
S 2 2
oAy f_sy" (izz +:2>2 & oy d“] " ebery)

The second integral of equation (18) becomes equal to zero as e-—w0
and finally the dipole downwash term takes on the integrable form of

)
AN R ﬁsz -2y [806yan) - 60y,y)]
-S (52 —n2 1/2 (y _ n)2
- (52 —yz) G/(X:.YLY)}dn -'wG(x,y,y) (]9)
Yy -n

It should be noted that, as n-—y, the integrand of equation (19)
tends to take on the definition of a second derivative of G(x,y,n)
with respect to n. However, the second derivative does not exist
since the integrand is singular at the downwash chord n = y. Figure 4
represents a plot of the spanwise distribution of the integrand I(y,n) of
equation (19) and displays the singularity existing at the downwash
chord. The analysis was accomplished using an assumed pressure dis-
tribution made up of a single Sine wave in both the chordwise and span-
wise directions. Location of the collocation station for which the
plotted values apply is as shown in the planform sketch having co-
ordinates of Y = y/s = 0.35 and x =-0.766.

x is defined as a decimal fraction of the downwash half chord and

12



iven as X =(X—Xm)b°
given X —b—(jy—)———

where X is the x coordinate of the mean chord line and

b(y) is the half chord value of the downwash chord.

Downwash station

I(y.n)

10. |

|

I

I

I e
1.0 0.5

-10.

-20.

Figure 4.- Spanwise Variation of the Integrand of Equation (19) Displaying
the Singularity at the Downwash Chord .

In the following section, the singularity just described is iden-
tified as being logarithmic in its distribution and consequently,
numerical evaluation of equation (19) will be accomplished using quadra-
ture formulas appropriate for evaluating logarithmic singular functions.
Also, the following section contains a description of how the spanwise
distribution of the integrand may be modified to provide a non-singular
distribution that méy be readily evaluated by Legendre-Gauss integration
quadrature formulas.

13



Identification of Spanwise Singularities

The spanwise singularity, observed within the above integral
evaluation of the dipole term, was first identified by Multhopp
(reference 8) within the development of the steady state lifting surface
solution. The method applied to identify the singularity for the steady
state case has been extended by Laschka (reference 9) to include the
unsteady case.

The functional expression of the dipole singu]arjty may be obtained
by developing a Taylor series expansion of aP(g,n) e kX0 apout the down-
wash station and performing the resulting chordwise integrations. That

is, we let AP(g,n) e~ 1kXo o approximated by the Taylor series given by:

aP(g.n) e TKX-E) o hp(e ) e TRX-E) o yi:__.AP(E 0) e-ik(X-aﬂ (20-A)

n=y
+ ..
then develop expansions of the individual terms
aP(g,y) e T8 o pp(x,y) + (g- X)[—-AP(E,y) e‘ik(x‘E{] b (20-8)
E:
-ik(x-g)| _|23aP(&,n
[5;-AP(£, n) e ] [ o _
n=y
n:y E:x
i (20-C)
a3 -ik(x-g)
+ (E-X)[aa 5 AP(gn) e ] + -
n=y, £=X

Inserting equations (20-B) and (20-C) into (20-A) produces a span-
wise and chordwise Taylor series approximation of AP(&,n) e'1kx° given by

ap(g,n) & TROTED < ap(,y) 4 (n-y)[%;'AP(E.n)]

n=1yY
. 2> ; (20-D)
+ (&- x)[-—-AP(E.y) e-1k(x-z)] + (“'y)[aaan aP(g.n) e ]
£ =X n =
§ =

14



The singularity expression is obtained by insertion of equation
(20-D) into the chordwise integral and performing the integration that

results in
d S ik (x-£)
S e {[?——AP(E,y) X-E] +
s (v - n)? 9% ' dg = x
- (y-n) [5%3; aP(g,n) e—ik(x-g)] ]' (21)

2
'{gg-(y-n)z 1n62(y-n)2} + Regular Terms | dn

Thus the dipole term contains the recognizable dipole singularity
along with an additional logarithmic singularity at the spanwise down-
wash station.

Part of the "regular terms" of the second expression in equation (21)
are composed of terms that are expressible as -

¥ o e N [BZ(Y~n)2]

that are continuous not requiring special attention in evaluating the span-

(y-n)4 1n32(y-n

wise integral.

The third integral of equation (9) also contains a spanwise singu-
larity that is proportional to 1n|y-n|that is identified by an inser-
tion of the Taylor series of equation (20-D) into the integral and per-

J

£ =X

forming the indicated chordwise integration.
The resulting spanwise integral is then given by:

S
1(3)(y) = 1k.’. {;P(x,y) + (n_y){BAPfE,n) ]
n
S

an

(22)
2 2
*11ng“(y-n) " {+ Regular Terms | dn

Again, part of the "regular terms" contain expressions that are
proportional to

R
()’-n)2 ]nez(y—n)z, e (y-n)” 1n82(Y-n)2 1s



which are continuous and do not require special integration procedures to
evaluate the spanwise integral.
" Following a similar line of thought, it can be shown that the fourth

integral of equation (9) is also singular at the spanwise downwash station
having the form of:

2 ¢ X _
4 () - %f [1n32(y_n)2 f wP(e,y) e KO-E) g 4
-S x'

+ Regular Terms dn

Once the singularities have been determined they may be sub-
tracted out of the integrand and analytically evaluated outside of the
integral.

Figure 5 shows the very smooth spanwise distribution of the inte-
grand I(y,n) obtained for the dipole term by subtracting out the identi-
fiable singularities of equation (21). Removal of the singularities allows
the use of Legendre-Gauss quadrature formulas to evaluate the spanwise in-
tegral using only a very small number of quadrature stations.

1(4y.n) Downwash station
y
20.¢
TN
\\
10.} x
y/s
TN 1.0 n/s

1.0 -0.5 N{| | ' s N/

10,4

Figure 5.- Spanwise variation of Integrand of Equation (19) with Singularities
of Equation (21) removed from the Integrand.

16



As a consequence of the above there are several options open to the
analyst in evaluating the spanwise portions of the downwash integrals and
are: (1) ignore the logarithmic singularity since it is of relatively low
power, (2) subtract the singularities out of the expression and analytically
evaluate their downwash contribution, and (3) apply numerical integration
quadrature functions that can evaluate the logarithmic term at the downwash
chord.

_ Numerical investigations have been performed to determine the validity
in using any one of the three integration options within the control sur-
face program. The analysis planform shown in figure 6 is a rectangular
wing having a full span flap deflected in steady flow. The deflection
shape and step function downwash distribution are also displayed to show
the discontinuity that must be matched by the mathematical downwash calcu-
lation of the integral equation. The assumed pressure distribution used
in the analysis is composed of a chordwise singularity term 1n(£—xc)2
and other modifying terms required to produce the discontinuity in down-
wash across the hingeline as well as satisfying the boundary conditions

along the planform edges.

Rectanguiar Planform With Full Span Flap

s

Deflection Shape

Downwash Distribution

Section AA Downwash Definition

Figure 6.- Analysis Planform Used tc Evaluate Effect of
Spanwise Singularities on Downwash Distribution
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Results of applying option(1)to evaluate the spanwise integral of
equation 19 are shown in figure 7. The integral is evaluated using

- the interdigiting process suggested in reference 7 where a single

18

Gauss-Mehler quadrature function is applied over the complete span of
the planform. The singularity at the downwash chord is not recognized
by this integration procedure and consequently the resulting chordwise
downwash distribution is smooth and continuous across the hingeline.
It appears that Tifting surface solutions obtained using option(1)will
not provide a satisfactory mathematical representation of the boundary
conditions for the physical wing-control surface combination.

w ini [(s’- o) SLT) - G“'”)] + NE(Y.Y)
i

(Y -n)!
. . 2i-
Hi-ﬂ/l ﬂi-C“—iTl-H
Calculated
Normaiwash ﬂ/;
L.E. . T.E.
1 ] § ¢+ = X

Figure 7.- Chordwise Downwash Distribution at Mid-Span Station Resulting
from Applying Option (1) (logarithmic singularity ignored)

Figure 8 presents the results using the second option where the sin-
gularity is treated by approximating the pressure terms by a Taylor
series expansion and removing the singularity from the spanwise integrand.
Equation (19) has been modified by subtracting the singularities (identi-
fied in equation (21)) and evaluating their effect outside of the integral
as indicated by the downwash equation shown in figure 8.
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The downwash distribution appears to be reasonable at large distances
from the hingeline, however, the downwash becomes singular at the hinge-
line. This is to be expected since the pressure term used in the analysis
to provide the step function change in boundary conditions across the
hingeline is proportional to 1n|g-xC|, which cannot be approximated by a
Taylor series in the vicinity of the singularity at ¢ = X

W' - [' 1 [(,._n.) G(x.v.n)—G(x.v.v)_(,._v.,G(:._vr.‘Vz

sys-n (y-n)
: - Pk(x- .
& Ll ne” ”{]_!:m (V—n)'] dn
2 - - s
*%‘[g‘c["’“-”"'k(x ‘:] ] L Ing*(y-n)"dn + NG(XY.Y)
Use single quadrature spanwise plus exact evaluation
Calculated N =
Normaiwash
4!
L.E. | /7\ T.E.
[ I T IR T T T T e, X V

Figure 8.- Chordwise Downwash Distribution Resulting from Applying Option (2)
(Togarithmic singularity is subtracted and evaluated separately)
The downwash distribution shown in figure 8 indicates that the
downwash collocation stations are to be restricted to chordwise locations
that are spaced well away from hingeline where large downwash gradients
are developed. This restriction may not be satisfied for analyses of
wings having small percent chord control surfaces. Large gradients may
exist over the chordwise length of small percent chord control surface
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and the resulting solutions would be highly dependent upon the number
and relative locations of the downwash collocation statijons.

This restriction may be removed by applying Option (3) where the
spanwise integral is evaluated by subdividing the integration interval,
-s=ns<s, into several subintervals and applying gquadrature formulas ap-
propriate to the functional characteristics of the integrand.

Results of applying option (3) to evaluate equation (19) are shown
in figure 9. The integration interval has been divided into subregions
and appropriate quadrature formulas have been applied in the subregions,
i.e.,square root quadrature formulas applied at ends of the interval,
logarithmic quadrature formulas used on either side of the downwash sta-
tion, and Legendre quadratures applied within the remaining integration
intervals.

|l liol Y y+t
wO. - {C(n)dn+~---+f| C(n)du+~--! Coldn + [ Cogn+ [Codn b+ nGcany)
y i -e Y sy

34- root log- log- log- Q- root
where
' o ! 2 gy G(XYN)-GORYY) o2 e Gl(l,V.Y)]
C0 o | 4y SISO - 4ty ERES
Calculated e
Normalwash
4|

Figure 9.- Chordwise Downwash Distribution Resulting from Applying Option (3)
(Togarithmic singularity evaluated by appropriate Quadrature Formulas)

The resulting downwash distribution (figure 9) does contain the step
function change across the hingeline necessary to satisfy the boundary
conditions and does not exhibit any large gradients near the hingeline. Con-
sequently, solutions obtained using option (3) should not be sensitive to

20
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the relative locations of downwash collocation stations even when
applied to analysis of small percent chord control surface configurations.
As a consequence of the above, option (2) will be applied to
evaluate downwash distributions due to continuous pressure distributions
for which a meaningful Taylor series expansion may be developed within
small regions around the downwash station. Also, option (3) will be
applied to evaluate the downwash distributions due to singular pressure
distributions for which a Taylor series approximation of the pressure
expression does not exist at the discontinuity stations.

Preferred Solution Process

No direct means is available to obtain a closed form solution of the
downwash integral equation that satisfies the boundary conditions exactly
everywhere on the surface. Approximate solutions are used in lieu of an
exact solution process. The approximate solution process is one of
generating a finite set of downwash sheets and constructing linear combina-
tions of these sheets to satisfy the boundary conditions at a finite set
of pre-selected control points on the surface.

The downwash sheets are obtained through an evaluation of the down-
wash integral using assumed pressure distributions that satisfy the
required loading conditions on the planform edges.

The assumption usually made is that if the boundary conditions are
satisfied at a suitable number of control points distributed over the
surface then boundary conditions over the rest of the surface will be
satisfied within small error 1imits.

This approximate procedure is equivalent to assuming that the down-
wash sheets may be represented by a series of polynomials that are con-
tinuous over the surface and may be combined to satisfy the surface
boundary conditions at arbitrary control points.

This procedure provides reasonable results for analyses of configura-
tions having continuous downwash distribution, however it may fail to
produce consistently accurate results when applied to analyses of wing-
control surface configurations that have discontinuous downwash distribu-
tions.

21



22

The direct solution process, described above, has been modified to
provide a systematic procedure for obtaining accurate solutions of con-
figurations having discontinuous downwash distributions and .is described
as follows:

Consider the downwash integral equation written in matrix form:

|w|=U'fAP Kdgdn] [a |

IW| is the kinematic downwash obtained from the known motion
of the 1ifting surface and includes the factor 4an2 of
equation (2).

where

[/ AP Kdadn] amatrix of discrete values representing
downwashes calculated at pre-selected collocation
stations due to a set of assumed pressure distributions,
AP .

|a l is an array of pressure coefficients that are evaluated
by applying a standard matrix inversion and multiplica-
tion procedure to equation (24).

Surface distributions of individual downwash sheets generated from
an evaluation of the integral are generally quite smooth provided that
the assumed pressure distribution AP is also smooth and does not con-
tain singularities within regions interior of the planform edges.

Figure 10 presents examples of chordwise downwash distributions obtained
for the midspan station of a rectangular wing in steady flow. The pres-
sure distributions used in the integral evaluation are composed of chord-
wise distributions shown on the left hand side of figure 10 coupled with
a single sine wave in the spanwise direction. The surface distributions
of the first four downwash sheets are smooth and continuous and may be
accurately represented by polynomial expressions.



ASSUMED MODES
8
8) coty

sine

HO v ™

f3(£) Iﬁ ) sin2e
f4(€) Q@ﬂsime
f(€) In(e-€)

RESULTING DOWNWASHES

[t )t @Ky dedn—

(€) J

Figure 10.-

Chordwise Downwash Distribution Resulting
from the Integral Evaluation Using Assumed
Pressure Distributions

An example of applying the direct solution process to configurations
having continuous downwash distribution is shown in figure 11. The solu-

tion is formulated by constructing a linear combination of continuous

downwash sheets to match

the kinematic downwash distribution at a set of

pre-selected control stations located on the surface. This linear com-
bination of continuous downwash distributions usually provides a rea-

sonable approximation of

the kinematic distribution such that the inte-

grated value of least-squares error in downwash over the surface would be

very small.
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W — NORMALWASH DISTRIBUTION
AT SECTION A-A

W=a|imjﬂ +827‘ﬁﬁ+83 + -

Figure 11.- Direct Solution Process Applied to Continuous Downwash
Distributions

Although the direct solution process will provide accurate results
for continuous 1ifting surface configurations, it may fail to provide
consistently accurate results for configurations having discontinuous
downwash distributions such as wing-control surface combination. Dis-
continuous downwash distributions such as a step function change in down-
wash acraoss the control surface hingeline can be represented by a series
of polynomials only in an approximate sense, as indicated by the solution

process given in figure 12,

W -— DOWNWASH DISTRIBUTION
AT SECTION A-A

W=4, yﬂ +8, ﬂ:ﬂﬂ +33V¢cﬂj 4 oo

Figure 12.- Approximate Solution Process Applied to Configuratjons
having Discontinuous Downwash Distributions
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The resulting mathematical downwash distribution obtained from a
summation of individual downwash sheets, shown in figure 12, would exactly
satisfy the kinematic distribution at the selected control stations, how-
ever the distribution between the control stations may deviate grossly
from the kinematic distribution and produce large values of least-squares
error in downwash over the surface. The solution would also be very
sensitive to the number of downwash sheets used in the approximation as
well as being sensitive to the relative locations of the control points
distributed over the surface.

A more systematic solution process applied to the solution of plan-
forms having discontinuous downwash distributions is one of developing a
mathematical downwash distribution that has identical discontinuity values
that are contained in the kinematic distribution and subtracting this dis-
tribution from the original, thus providing a downwash distribution that
is continuous over the surface for which the direct 1ifting surface solu-
tion process may be readily applied.

This preferred solution process for discontinuous downwash distribu-
tions is given by the matrix equation

[Wx.y)] —[ffAPSK(E,n)dEdn] 3, —e| W (63)]

|ﬁmod(x’)l)l = [ffAPrK(E,n)dEdn] I a |

where Wmod(x,y) is the continuous downwash distribution obtained by
subtracting from the kinematic distribution a
distribution having identical values of disconti-
nuities that are contained in the kinematic dis-

tribution.

APS the singular pressure distributions that provide the
same discontinuity characteristics contained in the
kinematic downwash distribution.

APr the regular pressure distributions used to define

continuous downwash distributions.
A graphic display of the preferred solution process is shown in
figure 13.
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Figure 13.- Systematic Solution Process Suggested for use on
Configurations having Discontinuous Downwash Distributions

The pressure distribution resulting from the solution process is the
sum of the pressures that provide the discontinuity characteristics and the
regular pressure distributions obtained as a solution of modified downwash
distribution Wﬁod(x’Y)‘

The key to this solution process is the development of pressure distri-
butions having known strengths that provide identical values of downwash
discontinuities contained in the kinematic distribution. Formulation of the
analytical pressure expressions that provide the required discontinuities in
boundary conditions have been well documented by Landahl (reference 3) and
Ashley (reference 10) and are briefly discussed in the following section.

Pressure Distributions

Use of the preferred solution process requires two pressure distribu-
tions to be defined over the lifting surface planform. One of the distribu-
tions to provide identical value of downwash discontinuity characteristics
as defined by the kinematic downwash distribution and the second pressure
function to provide smooth and continuous downwash distributions over the
surface.

Pressure distributions having known strengths that provide identical
discontinuity values of downwash across the boundaries of the control sur-
face have been developed by Landahl (reference 3) for the inboard partial
span control surface case and by Ashley (reference 10) for the case of a
control surface that extends to the planform side edge.
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The linearized 1ifting surface prob1em_presented in reference 3 has
been formulated using nondimensional variables throughout its derivation.
The cartesian coordinates (x,y,z) are nondimensionalized with respect to
the reference length by, the root semichord. Also, time is nondimensional-
ized and is defined as
vw
bo
where V_ is the free-stream velocity

t =

bo is the root semichord

T is time
The equations of motion given by equation (1) are then revised in terms of
the pressure perturbation cp = Re | P . exp(iktﬂ to provide the following
equation that is satisfied by the linearized approximation P.
2\ & 5 v 2025
- + + - + P = 2
(1-M%) PEE PYm F;c 2ikM PE k“M 0 (26)
where P is defined as
. P-Pe
pve /2

The boundary condition to be satisfied off of the 1ifting surface is

'F(g,n,o) = 0 and using the condition of normalwash on the wing along with

the relationship of pressure perturbation to velocity perturbation po-
tential the boundary condition to be satisfied on the wing is given as:

2_ -
P o= -2 [9—515432-+ ik H{Ean) 2 H(a,n)] (27)
g

where H(g,n) is the deflection shape defined by H(g,n) = H(g,n)/b0

The definition of the 1ifting surface deflection due to a trailing
edge control surface oscillation about a hinge line is given as:

Ale,m) = o(n) « (g-x) - Ulg-x.) - Uln-y;) (28)

where @(n) is the angular rotation of the control surface at n
measured in a plane perpendicular to the y axis.
X is the hingeline coordinate
y; s the side edge coordinate
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U(g-xc) is a unit function of (s-xc)
U(n-yi) is a unit function of (“'yi)
Inserting equation (28) into equation (27) and performing the

indicated differentiations results in the following boundary conditions
that are to be satisfied by the pressure functijon.

-20(n) [slex) + 21k - KElex) Julnyy) =

- TIEBAG

P, = (29)
0 £<xC

where G(E-Xc) is the Dirac delta function

The method of asymptotic expansions is applied to determine the
behavior of the pressure distribution, in the immediate vicinity of the
control surface leading edge & = Xe
effect of using the asymptotic expansions is to magnify the singular
region by stretching the coordinates by a small quantity e. Coordinate
stretching has the effect of making the highest derivatives dominate in
the singular region and allows the problem to be reduced to a solution
of a much simpler problem in the immediate region of the singularity.

To determine the pressure distribution near the forward corner of a
rectangular control surface all three independent variables are stretched

and at a side edge n = Y The

in the following manner of

_ (g-x.)  _ (n-y;)  _
E = 5 n o= —; = & (30)

[ €

Also, P is represented by a series in ascending powers of e given as
DY pln) (31)
n

Insertion of equation (30) and equation (31) into the differential
equation and boundary conditions provides the boundary value probiem

given as:
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-20(n) [6(®) + 2ike - K2%E | E>0
FE(E:ESO) = [ (3]"A)
0 £ <0
Source distributions, that satisfy the differential equation, are
selected on the basis of matching the boundary condition and results in
a solution that correctly describes the pressure variation both near the
control surface leading edge as well as near the corner of a non-swept
control surface given as:
= - -9in . J 2 2 2
Plens0) = [+ zike-x)]in| le-x )% + 2ln-y )2 -8ln-y;)
- . 2 2 .2 '
o)k - k2(g-x )] (ny)in| le-x )% +62(ny )2 -(e=x)|  (32)

Equation (32) may be modified to include hingeline sweep effects by
multiplying the first term of equation (32) by B/Bhg'
Bhg is defined as

Bhey = \/ 32 + tanzAC (33)

A is the sweep angle of the hingeline (positive when swept aft).
Also, o(n) is understood to be the rotation angle of the control surface
measured in a plane perpendicular to the y axis. The derived pressure dis-

tribution contains the expected logarithmic singularity along the hinge-
line. Landahl demonstrated that the solution also leads to a slope sin-
gularity in the spanwise loading across the side edge. It should be
observed that the present derivation is not valid close to the rear cor-
ner of the control surface. Here the problem is complicated by mixed
boundary values that must be considered as part of the "inner region".

A solution was obtained in reference 11 by a method of images to meet
the boundary condition at a rear corner of the control surface. It does
not appear to be valid for a swept trailing edge however, and for this
reason it has not been applied in the present program. Instead it was
considered sufficient to extend Landahl's solution to the rear corner in
the same manner as suggested in reference 3 .
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Pressure distributions have been formulated in a similar manner by
Ashiey (reference 10) for the control surface that extends to the tip
of the planform. The boundary value problem differs from those treated
by Landah] in that a mixed flow boundary condition must be accounted for
in the solution.

Following the derivation of reference 3 the first order "inner
problem” is defined at the hingeline of the control surface side edge as:

2
B
T, +C, +—1_ T+ 2tanA T, = 0 (34)
Pan Tz cos’a.  TEE “Pea
. PP= 2 0 1 _ w22
where CP ; and Bn 1 M*=cos AC

oV/2
Boundary conditions of equation (34) are specified by:

Co_ (E.0,0) = 20(n) 6(8) =0

(35)
Cp (B7,0) = 0 n<0
Solutions of equation (34) subject to the boundary conditions of
equation (35), are obtained by reducing the equation to a much simpler
form by applying a Fourier transformation on £ and after considerable
manipulations the first order solution is given as:
- -1/2
-Bn 2
AT W .| N o a?+{1-c ) ]
P | H[82+tan21\ ] /2 B
¢ 0
- tan2A 1/2 1/2 : tanAC 2 1/2 1/2
A0 T o)
! 8 [\ \d (36)
( tanzA 1/2 172 [ 1 tana 2.1/2 1/2
—-<1+ °> +1] (1+<—- C)) +1 dg
2 q B

- 8 L

where B'rf]
q9 = —
g
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The above integral may be reduced further to provide the following
expression for fb(g,n,o) at the control surface tip station.

| lex 02482 (s-m)2]) 724(s-n) - \[28(5n)
Jltex 262 (s-m)] 2g(son) + \f28(s-n)

The distribution obtained by this solution process appears to be
correct since Eb(&.n) approaches zero having an infinite slope propor-
tional to the square root of the distance from the wing-tip and also con-
2 term that provides the proper streamwise discontinuity

C_(O) = @(n)
P n(a +tan A, )T/2

(37)

tains a 1n(g-xc)
in downwash across the hingeline.

Pressure distributions obtained by the above described asymptotic
expansion process are valid only in localized regions of the planform
since the distributions of the outer regions have not been defined nor
matched with the inner region solutions. However, the essential part of
the pressure distribution that provides the discontinuities in downwash
along the control surface edges is defined by the inner region solution.
The distribution in the outer regions may take on any convenient form
that satisfies the required loading condition along the edges of the
planform since a unique distribution is not being determined at this stage
of the solution process. Consequently, the surface pressure loading func-
tions that provide the downwash discontinuities are obtained by extending
the applicable range of the inner solution and modifying these distributions
to meet the condition of having the pressures vanish in proportion to the
square root of the distance from the edges.

Pressure loading functions are developed to provide analys1s cap-
ability for a vast array of control surface configurations. The most con-
venient manner to describe the loading distributions due to motions of
multiple control surfaces is to describe the surface loadings for two par-
ticular configurations and form combinations of these to represent any de-
sired configuration.

The two basic control surface configurations for which loading func-
tions are developed are shown in figure 14 and figure 15.
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Figure 14.- Planform Definition Used to Describe Loading Functions
for an Inboard Control Surface

Y X,&

Figure 15.- Planform Definition Used to Describe Loading Functions

for an Outboard Control Surface

The pressure loading functions are defined over the surface only in
terms of the pressure loadings caused by motions of the right hand side
control surface. For symmetrical control surface deflections, the pres-
sure distributions over the 1lifting surface due to motions of the left
hand side control surface are identical to that of the right hand side,
but are reversed left to right, as in a mirror image. Consequently, the
complete symmetrical or antisymmetrical loadings may be formulated using
only the pressure expression due to motions of the right hand side control
surface. This is accomplished for the symmetrical case by defining the
total pressure existing at an (n) station to be the sum of the pressure at
(+n) and those at (-n) within the pressure expression describing the loadings
caused by motions of the right hand side control surface. The total anti-
symmetrical loadings at an (n) station are formulated by subtracting the
loadings at (-n) from those at (+n) within the pressure expression defining
loadings caused by motions of the right hand side control surface.
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Loading functions for the inboard partial-span control surface. --- The

pressure loading functions formulated for an inboard partial-span control
surface in terms of the geometrical properties of the right hand side are

given in the expression:

2
APS<Em) = 4DV2(52‘Y\2)]/ fS(“) QS(E,H)
where
F.n) = o(n/an(s? + tan?h )P (s2) "/
dg(€sn) = =-gy(n) + kz(a-xc)gz(n) - 2ik (g-x.)gy(n)+g,(n)

o(n) 1is the rotation angle at the hingeline measured in a plane

perpendicular to the y axis.

A is the sweep angle of the hingeline (positive
swept back)

Subscript s denotes that the pressure distributions contain sin-
gularities. The g](n) and gz(n) terms in equation (39) are control
functions to provide ejther symmetrical or antisymmetrical loadings
and are defined as:

}

91(n) = g]R(ﬂ) + SF 9 -n)

gp(n) = gN(n) + Sg g, (-n)

SF is a sign factor that takes on values of SF = +1.0 for
symmetrical loadings and SF = -1.0 for antisymmetrical loadings.

The g]R(n) and 92R(n) functions are non-singular in regions out-
side of the control surface boundaries for values of n<y;j and n >y,
The singularity is turned on at n = y, and its strength is maintained
over the spanwise length of the hingeline up to n = Yis where the sin-
gularity is turned off. For stations inboard of n = Yj the functions
are non-singular and are extended to the Teft hand tip of the planform.
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o’ = ey(e)nta| 1n ,[ka-xc)2+sz<yo-n>2]‘/2-e(yo-n>|
- 1n, [(e-x ) %+6%(y;-m) 2]/ 2-8ly; n),] (a1)
QZR(n) = (g% + tanzl\c)]/2 h(n)e

- [ez(s,n.y0>(yo-n> [1n g-x )%+ n>2]1/2-<s-xcﬂ

[«
- | [, o™ ]]/z‘xz'xc)”
[«

£-x.) 2482 (y;-n)?] 12 (x )

- ez(&.n,yi)(yi-n)[ In

-In

[(xz X )2+82(y n) ]]/2'("2"%)']} (42)

The e1(E) factor on g]R(n) modifies the chordwise pressure function
such that the pressure vanishes at the lesding and trailing edge in a
square root manner and maintains the required strength at the hingeline
to provide the discontinuities across the hingeline.

(oot (ex) T2
[ xgmE)(E-xy ] [ 1 1 1 ]
e](g) - [(xt-xc)(xc-x;) - §(E-xc) ( X=Xy - Xg X, ) (43)

R

The ez(g,n.ys) factor contained in 95 n) forces the pressures to
vanish having an infinite slope everywhere along the trailing edge except
at the control surface side edge where the singularity strengths are
maintained to provide the proper change in boundary condition across the

side edge. Using.yS to represent Y; or Yy,

: ) [ (x £ )? /4 : (44)
e &’ L] = .
2=ems (x.-£)° + e‘(ys—n)z]

The h(n) function is used to force the pressures to zero at the
planform side edges while maintaining second derivative continuity in

the spanwise loading.
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(s-y )% -(y,-n)2 /2 (ye-n)?
- S s 1+ 1 Vs y <s
[ (S_ys)Z :] 2- (s_yS)Z Sgn <

h(n) = ¢ 1.0 Yo < <Y
2
2731/2 +
g (S-.Vx)z -(ys+n) / 1+ %_(._y_s_‘j_)_z__ -s < ng-ys (45)
(s-y,)? (5-v5)
Loading functions for outboard partial-span control surfaces. -- The pressure

Toading functions for configurations having a control surface side edge at
the planform side edge typical of configurations shown in Figure 15 are
formulated in the following manner:

aP(e.n) = 4oV (s2n®)1/2 £ (n) g (e.n) (46)

having functions similar to the inboard control surface pressure defini-
tions given by

fs(n) = O(n)/4n(82+tan2A)]/2 (sz-nz) 1/2

a(5an) = =gy(n) + KE(E=xg) gp(n) - 2ik [(E-x.) g;(n) + g,(n)] (47)

The g](n) and gz(n) functions provide symmetric or antisymmetric
analysis capability and are defined as:

gy(n) = g Rn) + sp g (en)

g,(n) = g,Rn) + 5 g,"(=n) (48)
where SF = 1,0 for symmetric analyses
SF = -1.0 for antisymmetric analyses.

The g]R(n) and ng(n) functions turn on the singularity at the
planform side edge and turn it off at the inboard side edge of the

control surface at n = Yi-
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g]R(n) =

where

singularity strength at the side edge and forces the pressure to vanish
at the trailing edge with an infinite slope.

planform edge boundary condition while maintaining a second derivative

e1(E) is defined by equation (43)

e;(g) h

— h (n) In

r

( 2

g™ + tan? AC)]/2

E-X )2+82

-n)z]

(s- n)-&éﬁ(s n)

,\[’.ZE +32(5'ﬂ)2]1/2+8(s—n) +\/(23(s..n)

2

h, (n)e

[(5=x )2+82(y,-m?]'"% - B(Yi’“)l }

'[(S-n)e3(£,n.5) [1n | [(x)e82(s-m%] 2 (o)

-~ 1n l[(xl X_)

2, .2

+8%(s- )2]]/2'(x2'xc)| ]

= h(n) (yy-n)e, (€4n,y;) [1n I[(E-x )2+8%(y,

2] /2

(55|

- 1n, [(Xz’xc>2+82(yi'")2]1/2'(X1'Xc)l] ]

e2(£,n.y1) is defined by equation (44)

The modifying side edge function e3(E,n,s) maintains the proper

83(Em,

The hz(”) and hr(n) are the modifying functions that satisfy the

continuity in spanwise loadings and are defined as:
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[<s-yi>2-(y,--n)2]”2 [ by ]
— > V.
h.(n) = (s-yi)2 4 (s-y;) "=

1.0 n < ¥ (53)
Insertion of the above pressure expressions into the downwash
integral provides mathematical downwash sheets having identical dis-
continuity distributions as contained in the kinematic distribution.
Subtraction of these downwash sheets from the kinematic distribution
results in a modified downwash distribution for which direct solutions
may be obtained using a regular lifting surface pressure distribution
defined by: 5
Apr(a,n) = 4pV2 (sz-nz) v D Zanmfr(n)(n).gr(m)(g,n) (54)
m n

where

Q. are the unknown coefficient multipliers

fY(‘n) (n) = sin_ﬁﬂﬂ N = 1,3,5....symmetrical
sing 2,4,6....antisymmetrical (55)

= cds'](n/s)

cot & m =1
g™ (g.n) =[_ ¢ (56)
sin(m-1)e m = 2,3,4,...

where the chordwise angular coordinate is defined as:

(n) + x,(n)
-1 E-Xm(n))] Xy 2
- S m (n) =
) cos [ ( o x-(n )

The chordwise angular coordinate © 1is not to be confused with the
control surface rotation angle o(n).

Final Form of the Downwash Integral Equation

The final expression of the downwash-pressure integral equation is
formulated using the preferred solution process previously described for
evaluating the loadings on 1ifting surfaces having discontinuous downwash
distributions.
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The matrix form of the equation is given as:

4npvz[M + ik -Q(—’L] — [f]AP £,n)K(x, E,y,n)dEdn]

b_ax
[ ffAPr(Esn)K(X,Es)’m)dEdn] Ianm | (57)

0 0

The form of equation (57) is slightly different from that given
by equation (25) in that the coefficient ak(n) js placed inside of the
integral as a multiplier on ©(n) rather than being used as a constant
multiplier outside of the integral. ak(n) represents .a polynomial de-
fining the spanwise twist distribution of the control surface and allows
calculation of a variable downwash discontinuity along the hingeline.

The first matrix on the left hand side represents an array of values
defining the kinematic downwash at pre-selected collocation stations
distributed over the surface. The second matrix represents an array of
downwashes evaluated at the same stations using a known pressure dis-
tribution that provides the same discontinuities that are contained
in the kinematic distribution.

The caiculated downwash distribution is subtracted from the kinematic
distribution to form a modified distribution that is smooth and con-
tinuous. Integral equation solutions using the modified distribution as
new boundary conditions are obtained by the direct assumed mode solution
process.

The spanwise integral on the left hand side of equation (57) is
evaluated using logarithmic quadratures in the vicinity of the downwash
chord to evalute the spanwise singularity that has been previously
identified. The singularities are removed from the integral on the right
hand side of equation (57) and evaluated individually since a ‘meaningful
Taylor series expansion may be made for the continuous pressure distri-
butions used in the direct solution process.

The expression defining the mathematical discontinuous downwash
distribution represented by the second term on the left hand side of
equation (57) is given by the following:
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S X S

t
[ [ #rstemitoe.yn)ddn = [ (2D (n')[csu,n) + € (ya)
~$ X
£

-S

+

f S s 2 s ’
s(¥) [C1(y y) s -zi D3 Oey) y)]]dn + Tf (y)C3(y,y) (58)
fo(n)

(y-n)z s2-n y-n

where C (y,n) and C,s(ysn) represent the chordwise integrals due to
the singular and non-singular parts of the kernel function and

are given as:

Xy '
Cly.m) = (£.n) ”“X“‘J{- ‘ [1 + s ]
s JX s (y-n)* [(x—£)2+82(y-n)2]1/2

L
- 2
k k 2,52, \2N/2_ ..
¥ [(x-£)2+ ;(y_n)z‘]]/z -y In [<X-a) #°(y-n) ] (x g)'
-kz[ e 212""“‘jg (59)
28” | [(x-0)%+8% (y-m)?] V/
X
t
Che (¥5n) =./. QS(E,n) Kns(x-g,y-n)dg (60)
X
£

where gS(E,n) is the pressure function defined by either equation {39)
or equation (47).

h(n) is the spanwise pressure modifying function defined either by
equation (45) or by equation (52) depending upon the configuration
being evaluated.

The C%(y,y) and D?(y,y) terms are due to the Hsu integration
process where the chordwise integral at n = y and the spanwise deriva-
tive are removed from the integrand and are defined as:

X
S = 2 [ glem e K g (61)
X
L
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/
f(n)

S =
DI(xsy) = ==L S(y,y) + C3y.y) + ri(x,y) (62)
f (y) :
X
C5(y.y) = 2 f kg (5,y) e TKIxE) g (63)
X
L
. 2tanA
3_ -ik(&-x_) c
an [gS (E;ann___y + e c/ W yi<n<y0
ko (£5y) = (64)
3
ﬁ[gs(i,njnﬂ, ne y; and nz=y
0 n< y; and nzy,
rP(x,y) = ex (65)
—- - C
_e1k(x xc) 4tanAc In Xyox. yi<n<y,

The mathematical continuous downwash distributions represented by
the last term of equation (57) are evaluated by removing the spanwise
singularity from the integrand to produce an integrand that is smooth
and continuous and easily evaluated by a few spanwise quadrature terms.
The singu1aritie§ are identified by developing a Taylor series expansion
of AP, (£,n) e'1k(x'5), and performing the chordwise integration as
indicated in a previous section.

The expression defining the mathematical continuous downwash dis-
tributions represented by the last term of equation (57) is given as:

s X S ?
[ ft £P 6K bxog y-n)dedn = f (s2-n2)" fr(n)[Csr(y,n)*‘C:S(y,n)
=S X
L

-S

.0 [CTlysy)  DY(xuy)
+ fr(nj[ GoZ yen —[ D, (x,y) + (y-n) D3(x,y)] 1ng°(y-n) } ] dn
+ 1 (y) { T lyay) + 0T (ny) + Dylxay) [yPes? (] 82 - 1)]
+ D3(x,y)[%-y3+y52. (1n | %é-| - %-) + ysz] } (66)
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The subscript r denotes that smooth and continuous pressure
distributions defined by equation (55) and equation (56) are being
used in this integral evaluation.
¢ (y,n) and C;s(y,n) represent the chordwise integrals due to

s
the singular and non-singular parts of the kernel function.

X

t .
cM(y,n) = (,)-1k(x—z) [ 1 [H xg ]
S y,n f gr Eg,n)e (y_n)Z [( )2 (y n)ZT/Z

g
[(X-£)2+62(y-n)2]”2 - (x-e),

ik K
[(-0)%+e?(y-n)?]1 /2 2

+ In

2
- X X2 -m | 1de (67)
26° [ [(x-6)+8%(y-n)?]"/% ”

r Xt
Crstyon) = [ g lean) Kygleegayon) de (68)

)

where gr(g,n) are the regular 1ifting surface pressure distributions
of equation (56).

The C;(y,y) and D{(x,y) terms are due to the Hsu singularity sub-
traction process and defined as:

C] ysy) = 2f g.(&sn) e Tk(x-8) g " (69)
X
(),
DI (x,y) = ——2——)—-"—(: ysy) * Co(yay) + ra(xay) (70)
n
where
Coly.y) = 2 f k. (£5¥) e7ik(x-8) g (71)
o)
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-ik{g-x,) ax, (xt-e)”2

[
a- 19 (E,n)] - € =
an L°r m=1
- n=y 2 an —\3/2
kY‘(E ,.Y) - (E XQ,) (72)
9
=—19.(g,n) m> 1
an [ r ]TF_Y
1/2
2x=-(x, +x_) X, ~X
. Ix . t 72 t m=1
_e—1k(x-x2) 53&1j% + arcsin '—?ET§7“'_)+ Z(X-XR) J
r(xy) = (73)
0 m>1
The D2(x,y) and D3(x,y) terms are due to subtracting the spanwise
logarithmic singularities from the integrand and are defined as:
82 3 -ik(x-¢) . Ko or
D,(x.y) =77 37| 9.l&yle cox kg, (x,y) - 7= Cy(y»y) (74)
2 2 .
Dy(xy) = -5 — [ gr(a,n)e"k(x'g)] + ik %—-[gr(x,n)] (75)
agan E=X n=y
n=y

2
k
£

Numerical evaluation of the above downwash integrals is accomplished

Chlysy) + rr(x,y)]

by subdividing the integration intervals into small regions and applying
integration quadrature formulas appropriate to the function characteris-
tics. Gaussian quadrature formulas containing unity, square-root, and
logarithmic weight functions have been extensively used in the integral
evaluations and are annotated throughout the computer program listing
(reference 4) and need not be discussed here.

Generalized Forces

Generalized forces are formulated using two sets of pressure distri-
butions that result from the modified solution process and are given in
the following form applicable to the half-span wing;
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0

where

AP'(Ean)

AP

AP

J
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J

S .

J
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Jb.o
b

H1-(E ,n) is the i

X

X¢

APj(e: ,n) ”1(5 ,n.) d(boa) d(bon)-

th deflection mode shape.

APj(E,n) is the sum of the singular and regular pressure

AP

r.
J

distributions obtained as solutions of the down-

wash integral equation operating on the Jth

deflection mode shape.

(Eyn) + AP (&)

J

The regular pressure distribution is given as

2
(g,n) = V 2: 2: anm r n) 9( )(E,n)
where aﬁ%) are the pressure coefficients obtained from the
integral equation solution using the modified
downwash distribution as boundary conditions for
the Jth mode .
fgn)(n) represents the spanwise pressure mode distribution
given in equation (55).
gﬁm)(ﬁ,n) represents the chordwise pressure mode distribution

of equation (56).

The singular pressure distribution is given as:

4
LRV D AN AT IR

(Esn)

where

f.(n)

gs(E,n)

A

(3)

(

k-1)

k=1

is defined by equation (38a)(and equation (47)

is defined by equation (39) or equation (47)
depending upon the configuration being evaluated.

are four coefficients of the cubic polynomial used
to define the spanwise twist distribution of o(n).

(76)

(78)

(79)
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The pressure distributions reported by the computer program
(reference 4) are referenced to the dynamic pressure and defined as:

dimensions same as used in

APj(E.n)
—_— [ Machine Output] the ratio Hj(a.n)/bo

pV2/2

where

Machine Qutput = 8\/ [2 Z a, J) f n) gim)(ﬁm)

D> A((g_)]) f(n) g (€ n)]

Sectional generalized forces may be obtained at arbitrary locations
along the semispan and are defined as:

b_x
s ot
QG - f aP,(£.n) Hi(e,n) d(bye)
boXy,
Xt
= b, f aP(€,n) H;(£,n) d
o)

A maximum of eleven (11) sectional generalized forces may be cal-
culated for each mode shape and are referenced to Spv2/2.

% .
= [-Mach1ne Output] dimensions same as used
in H.(&,n)
SpV2/2 J
(note: bgs =S Tlength of semispan)
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where

Xt
[Machine Output] - sf Ho(€,n) \f1-( [E v ald) ey glme
X
. £

n m

: f(n)
+ %; édg]) —§§~—— g  (&.n) ] de

=

The total generalized forces are evaluated using the definition:

s x
t
T b02 ff APJ-(E,H) H.(g,n) dedn (83)
o “x

The program output (reference 4) of generalized forces are

referenced to bOSpVZ/Z and given in the form:

Qij

2
bOSpV /2

- . same dimensions as used in
[Mach1ne Output ] Ho (e ) (84)

J
(note: b 25 = b_S)

where

5
[Machine Output] = 8 f
0

+ 3 oAl 5 gS(E,n)}dEdn
k

It should be noted that the sectional generalized forces (equation
(82)) are used to obtain information on the spanwise loadings and chord-
wise center of pressure locations. The maximum number of stations
where the sectional forces are calculated is Timited to eleven (11), and
the spanwise distribution is selected by the user.

The spanwise locations (where the sectional generalized forces are
calculated) do not coincide with spanwise quadrature stations where the
chordwise integrals of equation (84) are evaluated. The chordwise integrals
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of equation (84) are calculated at particular spanwise stations depending

upon the quadrature distribution required for a particular configuration =~

and are not printed as output.
PROGRAM CAPABILITIES AND LIMITATIONS

The computer program developed around the preferred solution process
may be used for a vast array of analysis configurations and has cap-
abilities and limitations listed below:

1. Trailing edge control surface configurations may be composed of a
full span, inboard partial-span, outboard tip partial-span, or up

to four individual control surfaces including side-by-side common

edge control surfaces.

2. Al11 hingelines are assumed to be located at the leading edge of the
control surfaces. Control surface hingelines may have individual
definitions, however, each hingeline is assumed to be defined by a

Tinear equation.

3. A1l control surface leading edges and inboard side edges are assumed
to be represented by a sealed gap condition.

4, A1l control surface side edges are assumed to be parallel to the
remote stream direction.

5. Spanwise elastic twist distribution of the control surface hingeline
is approximated by a cubic polynomial to allow a spanwise variation
of the hingeline rotation o(n).

6. Control surface camber bending is treated within the regular lifting
surface solution.

7. Lifting surface solutions of planforms not having control surfaces
may be obtained upon user option.

8. Spanwise symmetrical or antisymmetrical analysis may be accomplished
upon user option.
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10.

11.

12.

13.

Planform definition is assumed to consist of linear segments defined
by input data. (See Appendix A on effect of locating downwash chords
near junctions of linear segments of planform definition.)

Downwash boundary conditions may be modified to include local stream-
wise velocity variations due to airfoil thickness effects. (See
Appendix A) (See reference 4 for limitations)

Input mode shapes may be defined at many points on the surface (such
as obtained from a finite element structural analysis)--or optionally
may be defined using distortion shapes of an elastic axis modal
analysis (see Appendix A of reference 4).

Multiple k value and Mach number analyses may be made in a single
machine run (See reference 4, Section 3.7.2 LIMITATIONS)

The printed output of the program, obtained on user option, consists
of a definition of kinematic downwash matrix, mathematical dis-
continuous downwash matrix, modified downwash matrix, pressure series
coefficients, chordwise array of pressures at prescribed spanwise
stations, sectional generalized forces, and total generalized forces.
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RESULTS, COMPARISONS AND DISCUSSION

This section contains an illustration of the downwash subtraction
procedure used in the preferred solution process and also provides
pressure distributions and generalized forces resulting from analysis
of four wing-control surface configurations for which experimental data
are available for comparison. The four experimental configurations
consist of (1) the swept-wing full span flap configuration of reference
12 that provides pressures due to a steady flap deflection, (2) a swept-
wing having an inboard partial span control surface of reference 13 for
which non-oscillatory pressures are available, (3) a non-swept rec-
tangular wing having an oscillating full span flap (reference 14), and
(4) a swept wing having side-by-side control surfaces oscillating in
various arrangements (reference 15).

Description of Downwash Subtraction Process

The configuration of reference 15, shown in figure 16, is used to
illustrate the downwash subtraction process.

=Y

25° LOCATION OF PRESSURE
ORIFICES

0.60m

4

0.18m

Figure 16.- Experimental Planform of Reference 15 Showing the
Side-by-Side Control Surface Arrangement (dimensions
in meters)
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The inboard control surface is assumed to be oscillating about its
hingeline at a reduced frequency of k = 0.372 and at a Mach number of
M = 0. The rotation angle is assumed to be constant across the span of
the control surface having a value of one radian measured in a plane per-
pendicular to the y axis. Remaining portion of the 1ifting surface is
assumed to be at rest. It is also assumed that the control surface mo-
tions are spanwise symmetrical with respect to the planform center line.
The subtraction process is illustrated only for the in-phase part of the
downwash distribution.

The in-phase part of the kinematic downwash distribution obtained
from the motion definition is shown in figure 17 for nine chords
equg]]y spaced across the semispan. The downwash has a uniform value

of $—= 1.0 over the control surface and is zero everywhere else.
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Figure 17.- Kinematic Downwash Distribution Derived from
Motions of Inboard Flap

Downwash distribution resulting from the integral evaluation using
the loading functions defined by equation (38) is shown in figure 18.
The distributions are smooth in regions outside of the control surface
and a unit change in downwash across the hingeline is obtained for the

chords that lie on the control surface.
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Figure 18.- Derived Downwash Distribution Obtained from the Integral
Evaluation Using Loading Functions of Equation (38)

The downwash distribution of figure 18 is subtracted from the kine-
matic distribution of figure 17 resulting in the modified distribution
of figure 19.

Figure 19.- Modified Downwash Distribution Obtained by Subtracting
the Derived Distribution from Kinematic Distribution



Since the modified distribution is smooth and does not contain any
discontinuities, it appears that the pressure loading functions
(equation (38))'that were developed from the asymptotic expansion pro-
cess of reference 3 provide the proper description of surface loadings
to be used in obtaining solutions for configurations having discon-

tinuous downwash distributions.

Steady-State Results for Full-Span Flap Configuration

The full-span flap configuration of reference 12 is shown in
figure 20 for which experimental pressures were obtained for various

combinations of flap deflections and wing angles of attack.

The flap

deflection and wing angle of attack were maintained at constant values

for each experimental run.

LOCATION OF PRESSURE
ORIFICES

Q25 CHORD OF
AIRFOIL SECTION

l=11.25

38. =

Figure 20.- Experimental Full-Span Flap Configuration
NACA RM A9G13 (dimensions in inches)

Experimental pressures were obtained along a streamwise section

located at the 50% semispan station.

The longitudinal junction between

the wing and flap was sealed to prevent flow leakage between the lower

and upper surfaces at the hingeline.
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The theoretical pressure distributions are obtained using a modi-
fication on the boundary conditions (described in Appendix A) that in-
clude local streamwise velocity variations due to airfoil thickness
effects. A comparison of the experimental and theoretical results are
shown in figure 21.

© EXPERIMENT (NACA RM ASG13)

——  THEORY 1v_
~ T

107 .99
TP

Figure 21.- Theoretical and Experimental Chordwise Pressure Distributions for a
Full-Span Flap Deflected by ¢ = 10°, a = 0.0° at M = 0.2]1 and k = 0

The experimental sealed gap condition at the hingeline satisfies
the theoretical assumptions (reference 3) and provides a one-to-one
basis for evaluating the accuracy of the theoretical prediction method.

The comparison indicates that the experimental values are theo-
retically predicted within very close tolerances over the entire length
of the chord even in the vicinity of the hingeline,
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Steady-State Resuits for a Partial-Span Flap Configuration

The partial-span control surface configuration shown in figure 22
represents the experimental planform of reference 13 to obtain chord-
wise pressure distributions due to a steady fiap deflection. Pressures
were obtained along a streamwise chord located at the 46% semispan
station. The hingeline gap was sealed providing a one-to-one basis for
comparing theoretical and experimental results.

LOCATION OF PRESSURE
ORIFICES

0.25 CHORD LINE
/

Figure 22.- Experimental Planform of a Partial-Span Flap Configuration of
NACA RM L53C23 (dimensions in inches)

Theoretical pressures were obtained along various streamwise chords
spaced over the semispan and are shown in figure 23. The comparison
indicates that the experimental pressures are accurately predicted by
the theoretical technique over the length of the chordwise strip for-
ward of the hingeline. The theoretical distribution over the control
surface are only slightly larger than the experimental values. Con-
sequently, it appears that the Tifts and hinge moments may be predicted
within reasonable accuracy limits for configurations having a sealed

gap at the wing-control surface junction.
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Figure 23.- Theoretical and Experimental Chordwise Pressure Distributions for
Partial-Span Flap Deflected by 6 = 10°, o = 0°, at M = 0.60 and k = 0

Rectangular Planforms having Full-Span Control Surfaces

Two rectangular planforms having aspect ratios of 1.0 and 2.0 were
tested in combination with a 40% chord flap for various values of re-
duced frequencies to obtain hinge moments and 1ifts due to the control
surface motions. The experimental data are reported in reference 14.
Each planform had a small gap along its hingeline that may have a small
influence on the pressure distributions in regions near the hingeline.
There are no means available to determine to what extent that the
pressures are affected by open gap condition since only experimental
hinge moments and total 1ifts are available for comparison.

Experimental and theoretical values of hinge moments and phase
angles as a function of reduced frequency are presented in figure 24 for
the aspect ratio 2.0 planform. The theoretical hinge moments appear to
agree with the experimental values, however there is a discrepancy in the
predicted phase angles that may be due to the open gap at the hingeline.
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Figure 24.- Theoretical and Experimental Hinge Moments and Phase Angles for an
Oscillating Full-Span Flap AR = 2.0 Configuration of WADC TR 53-64

Comparison of wing 1ifts and phase angles are shown in figure 25.
There is good agreement between the theoretical and experimental results

over the entire range of reduced frequencies used in the tests.

Conse-

quently, it appears that wing 1ift is not greatly affected by open gaps

at the hingeline.

8
6
|Lg|
4]
2
0 . 2. 3 @
1/k

- 160
-120.-
— THEORY

- 80, O EXPERIMENT
(WADC TR 53-64)

- 40 4 M=0

0 2. 3. 4,

1/k

Figure 25.- Theoretical and Experimental Lifts and Phase Angles for an
Oscillating Fuli-Span Flap AR = 2.0 Configuration of WADC TR 53-64
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Experimental and theoretical reﬁu]ts for the full span control
surface configuration of aspect ratio 1.0 are shown in figure 26 and
figure 27. Again, the theoretical method appears to predict reasonable
values of hinge moments and total 1ifts; however, the predicted hinge
moment phase angles deviate from the experimental values and the dis-
crepancy may be due to the open gap at the hingeline.
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Figure 26.- Theoretical and Experimental Lifts and Phase Angles for an
Oscillating Full-Span Flap AR = 1.0 Configuration of WADC TR 53-64
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Figure 27.- Theoretical and Experimental Hinge Moments and Phase Angles for an
Oscillating Full-Span Flap AR = 1.0 Configuration of WADC TR 53-64
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The difference may also be caused by trailing edge flow separation
that could have been experienced during the test since there is a very
large adverse pressure gradient at the trailing edge that might not
have been maintained during the experiment. (see page 315 of reference
17 for the pressure gradient plot of the NACA G010 airfoil section used

in the experiment.)

Effect of Hingeline Gaps on Chordwise Loadings

A theoretical study has been made (reference 16) to investigate the
effect of hingeline gaps on chordwise pressure distribution, and the
results are shown in figure 28.
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Figure 28.- Non-Dimensional Lift Distribution (reproduced from reference 16)
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The study configuration is composed of a pair of two-dimensional
equal chord Tifting surfaces that are placed in a coplanar arrangement.
The leading surface is at a zero angle of attack and the trailing
surface is given an angle of attack by rotating the surface about its
leading edge. Chordwise pressures are obtained for various separation
spacings in steady flow.

For a zero gap spacing the loadings produced at the junction of the
two surfaces exhibit the typical symmetrical logarithmic singularity
identified for a discontinuous downwash distribution of a two-dimensional
wing-control surface combination. As separation begins, the Toadings on
the wing near the wing trailing edge change from a singularity character-
istic to a loading that becomes equal to zero. However, the loadings
near the leading edge of the control surface change from a logarithmic
characteristic to that of having an inverse square root singularity
that causes a higher loading to exist on the control surface for the open
gap condition than for the zero gap condition.

Large separation distances between the surfaces result in loadings
that are vastly different from the zero separation case. However, small
separations affect the pressure distributicns only in localized regions
near the hingeline. It appears that the zero gap theoretical method
will provide reasonable predictions of total 1ifts and moments for con-
figurations having small hingeline gaps.

Side-by-Side Control Surface Configuration

The side-by-side control surface configuration is shown in figure 16
for which unsteady pressures are obtained for various combination of flap
deflections. The experimental model had small open gaps at the hingelines
and at the side edges. Reference 15 provides no information to define the
exact dimensions between the control surface side edges and the pressure
measuring stations located in the vicinity of the side edges. The span-
wise Tocation of the experimental pressure chords were established by
measuring the pressure chord locations off of the planform drawing.
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Figures 29 and 30 present comparisons of theoretical and experimental
results for a mode shape in which both flaps are oscillating with the
same phase and amplitude and the wing is maintained in a stationary posi-
tion. There is good agreement between the theoretical and experimental
results in all areas except in localized regions near the hingelines.

The experimental values are less than the theoretical values forward of
the hingeline and slightly greater than the predicted valuse aft of the
hingeline. The variations near the hingeline are attributed to the open
gaps at the hingelines. Even though the comparisons deteriorate in
regions near the hingeline it appears that the total 1ifts and moments
may be estimated within reasonable bounds for configurations that have
small open gaps at the hingelines.
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Figure 29.- In-Phase Chordwise Pressure Distributions for Both Flaps Oscillating
with the Same Phase and Amplitude. A. = (0.82°, A0 P 0.82°,

A, = 0° k =0.372, and M = 0 i.f.
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Figure 30.- Qut-of-Phase Chordwise Pressure Distributions for Both Flaps Oscillating

. . ~ ° = ° = n°
with the same Phase and Amplitude. Ai.f. = 0.82°, Ao.f. 0.82°, Aw 0

Figures 31 and 32 present comparisons of theoretical and experimental
pressure distributions for a mode shape in which the outer flap is os-

cillating and the inner flap and wing are maintained in a stationary

position.
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Figure 31.- In-Phase Chordwise Pressure Distributions Resulting from Motions of
Outer Flap. A; . =0°% A . =0.66°, A =0° k =10.372, and M= 0
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Figure 32.- Out-of-Phase Chordwise Pressure Distributions Resulting from Motions

of Outer Flap. Ai.f.= 0°, Ao.f.= 0.66°, Aw= 0°, k = 0.372, and M=0

Again, the only area where the comparisons deteriorate is within

the hingeline region and is probably due to open gap effects at the
hingeline.
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CONCLUSION

A theoretical analysis and computer program have been developed for
the prediction of unsteady 1ifting surface loadings caused by motions of
trailing edge control surfaces having sealed gaps. The program has been
developed around a systematic solution process where the discontinuities
in the downwash distributions are separated (and handled separately)
prior to applying standard lifting-surface solution techniques.

Theoretical results are presented to demonstrate the versatility of
the program capabilities. Comparisons of theoretical and experimental
data are presented for four wing-control surface configurations. Two of
the experimental configurations had sealed gaps at the hingelines, and
two configurations had small open gaps.

The comparisons indicate that reasonable pressure distributions are
obtained for the sealed gap cases, but there are moderate differences near
the hingelines for the open gap cases.

The results also indicate that the method developed will provide
reasonable predictions of unsteady loadingsfor a great variety of control

surface configurations.

62



e T T

10.

REFERENCES

A. H. FLAX: Reverse Flow and Variational Theorems of Lifting
Surface in Nonstationary Compressible Flow. J. Aeron. Sci. (1953),
pp. 120-126.

J. H. BERMAN, P. SKYPPYKEVICH, J. B. SMEDFIELD: Unsteady Aerodynamic
Forces in General Wing/Control. Surface Configuration in Subsonic
Flow. AFFDL-TR-67-117.

M. LANDAHL: "Pressure Loading Functions for Oscillating Wings with
Control Surfaces" AIAA Journal, Vol. 6, No. 2, Feb. 1968.

M. C. REDMAN, W. S. ROWE, B. A. WINTHER: Prediction of Unsteady
Aerodynamic Loadings caused by Trailing Edge Control Surface Motions
in Subsonic Compressible Flow--Computer Program Description, NASA
CR-112015.

H. G. KUSSNER: General Lifting Surface Theory, Luftfahrtforschung,
Vol. 17, No. 11/12, Dec. 10, 1940. Also discussed in Aerodynamic
Flutter, I. E. Garrick, editor. AIAA Selected Reprints, Vol. V

C. E. WATKINS, H. L. RUNYAN, D. S. WOOLSTON: On the Kernel Function
of the Integral Equation Relating the Lift and Downwash Distributions
of Oscillating Finite Wings in Subsonic Flow. NACA Rep. 1234.

P. T. HSU: "Calculation of Pressure Distributions for Oscillating
Wings of Arbitrary Planform in Subsonic Flow by the Kernel Function
Method" MIT ASRL T.R. 64-1.

H. MULTHOPP, "Methods for Calculating the Lift Distribution of Wings
(Subsonic Lifting-Surface Theory)" ARC R & M 2884.

B. LASCHKA, Zur Theorie der harmonish schwingenden tragenden Flache
bez Unterschallstromung. Z. Flugwiss 12 (1963), pages 265-292.

H. ASHLEY and W. S. ROWE: "Unsteady Aerodynamic Loading of Wings With
Control Surfaces". Z. Flugwiss 18 (1970). September/Oktober, pages
321-330.

63

Ly



11.

12.

13.

14.

15.

16.

17.

64

H. FREESE: "Zur Berechnung der Ruderluftkrafte im Unterschallbereich”
ZAMM 50, 633-636 (1970).

B. E. TINLING and J. K. DICKSON: "Tests of a Model Horizontal Tail
of Aspect Ratio 4.5 in the AMES 12-foot Pressure Wind Tunnel" NACA

RM A9G13.

A. D. HAMMOND and B. A. KEFFER: "The Effect at High Subsonic Speeds

of a Flap-Type Aileron on the Chordwise Pressure Distribution Near Mid-
semispan of a 35° Sweptback Wing of Aspect Ratioc 4 having NACA 65A006
Airfoil Section" NACA RM L53C23.

V. BEALS, and W. P. TARGOFF: ”Contro] Surface Oscillatory Coefficients
Measured on Low Aspect Ratio Wings" WADC TR No. 53-64.

H. FORSCHING, H. TRIEBSTEIN, J. WAGENER: "Pressure Measurements on
Harmonically Oscillating Swept Wing with Two Control Surfaces in
Incompressible Flow" presented at Symposium Aerodynamics of Inter-
fering Surfaces, Tonsberg, Norway (1970) AVA FB 7025.

R. B. WHITE and M. T. LANDAHL: "Effect of Gaps on the Loading Distri-
bution of Planar Lifting Surfaces" AIAA Journal, April 1968, pages
626-631.

I. H. ABBOTT and A. E. VonDOENHOFF: "Theory of Wing Sections",
McGraw-Hi11 Book Company (1949).



APPENDIX A

A CAUTION REGARDING PLANFORMS WITH DISCONTINUOUS EDGES, AND A PROVISION
FOR INCLUDING EFFECTS OF AIRFOIL THICKNESS VIA LOCAL LINEARIZATION

Suggestions are made for modifying analytical procedures used in obtaining
loadings on discontinuous planform shapes, and for modifying lifting surface
boundary conditions w/V such that the physical fiow pressure distributions
are more readily simulated by the theoretical pressure distributions.

Modification of Planforms Having Discontinuous Shapes

Analytical difficulties may be encountered in predicting the aerodynamic
loadings on planforms having analytic discontinuities in the planform shape
definition. Figure 33 represents a typical analysis planform where first
derivative discontinuities in the shape definition exist and may provide
inconsistent results if the spanwise distribution of collocation stations
contain a control point located at or very near the spanwise discontinuity

station.

planform
discontinuity
stations
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The mathematically derived downwash sheets obtained from an evaluation of
the downwash integral will exhibit singularities whenever collocation
stations are located at the planform spanwise discontinuity stations. The
singularities are due to the over-simplified manner in which the pressure
distributions are assumed to exist over the planform. The assumed

pressure functions are distributed continuously over the surface in such a
manner that the planform is completely covered regardless of the analytic
continuity of the planform definition. If the planform definition con-
tains sharp breaks or discontinuities in its first derivative definition,
then the pressure distributions and resulting spanwise loadings will also
exhibit discontinuities at the same spanwise stations. It is the discon-
tinuous first derivative of spanwise loadings that cause the numerical
problems and produce singularities in the predicted downwash sheets. The
spanwise loading discontinuities may be removed by using a suitable pres-
sure distribution that is analytically continuous in its spanwise direction.
However, no such distributions have been formulated nor used within the
present program development since it is obvious that there are other means
available for obtaining reasonable results other than overemphasizing the
effects of localized flow in regions of planform discontinuities. The
problem of downwash singularities may be circumvented by smoothing the
planform discontinuities or by keeping the spanwise location of collocation
stations well away from the troublesome regions. However, numerical prob-
Tems do exist and the analyst should be cognizant of the potential problem
and to what extent that the downwash distributions may be distorted in the
regions of planform discontinuities.

The extent of downwash distortion may be determined by evaluating the down-
wash integral equation for the steady flow case given the following form:

S

Xt
Wi, y) = Jf' %“'l:f*n)-l'sue,n4}+ = ] de ] T
s X, Jix-6) 282 (y-n)? o

- -€

In this example, f(n) is taken to be the spanwise pressure function
corresponding to an ellipse, f(n) =V52 - n2 ; and g(&,n) is the
chordwise pressure function given as

o 9(em) = Dxp(m) - €172/ [ e - x(m) 1'/°



R T

Also, the planform being evaluated is a delta wing having a discontinuous
planform definition at the center line.

Performing the indicated differentiation with respect to n in equation (A1)
and retaining only the essential terms that contribute to the singularity
problem results in the following expression:

S X

_ t ag(g,n)[ 1+—=2=5 da] dn_ (A2)

W(x, = F 92151 .
e ) fs[ Xy o e \/(X‘E)2+32(y-n)2] o

The aggi’n)term has a finite discontinuity at the planform center line

having equal but opposite signs on either side of the center Tline.

To shorten the expression let the chordwise integral be defined as:

X
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And Tet Hg(n) be H(n) when the left hand side derivative of ég%%iﬂl

used in equation (A3); also let H .(n) be H(n) of equation (A3) using
the right hand side derivative of Qgéﬁ;nl

Then the shortened form of equation (A2) becomes:

3
v - dn_
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Equation (A4) may be evaluated by adding and subtracting the function
H, (n) over the integration interval o<p<s.
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The second and third integrals of (A5) are evaluated by making a con-
tinuous extention of the definition of 3g(€,n) across the centerline

on L
to the right hand tip atn= s,

The integrals may be combined to provide the expression

- _ 7 dn > dn 2 dn
W(x,y) = f Hy(n) 5o - f H(n) 5= +f He(n) 5o (A6)
-S

Singularities at n = y are removed from the integral and evaluated

separately as shown by the following:

S

S
-5 =S
> S
3 BLAOREROR = RO =
° o]
> S
o RN REROR B RO )
° 0

The only terms containing singularities (with the restriction that the
downwash stations are contained in the interval -s<y<s) are the terms

having an integral form of
s

f)’ C_lnn (A8)

0

Equation (A7) may then be expressed as having singular and non-singular
terms that take the form of:

Wix,y) = [ Hr(Y) - H,(¥) 1 injy] + Regular Terms (A9)

and the limiting value of W(x,y) tends to infinity as y—so.
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Thus, the downwash sheet will exhibit unrealistically large values of
downwashes whenever a downwash chord is placed near a planform disconti-
nuity station and is due solely to the manner in which the pressure load-
ings are assumed to exist on the boundaries of the planform.

There is an obvious solution to this problem (see reference 8) in that

the derivative of the spanwise loadings may be made continuous by smoothing
the planform discontinuities. An example of how smoothing of planform dis-
continuities affects the downwash distribution is shown in figure 34.

R

SECOND DERIVATIVE

T L\ CONTINUITY STATION

<|sI

Figure 34.- Spanwise Downwash Distribution Resulting from Various Apex
Smoothing Values
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The clipped delta planform shown in figure 34 has been modified in the
region of the apex at the centerline to'broduce a continuous first deriva-
tive definition of the planform across the centerline. The method se-
lected to smooth the shape definition is one of applying a function
having a continuous first derivative that is zero at the centerline and
is also continuous in the second derivative at the spanwise matching sta-
tion. This particular smoothing function provides derivative continuity
with the least distortion in planform definition. Downwash values ob-
tained at spanwise stations along the 50% chordline are shown in the
lower part of figure 34 . The downwash distribution near the planform
centerline does become singular for the pointed apex case. However, the
downwashes take on more realistic values whenever the apex discontinuity
is removed by applying a small amount of smoothing.

The spanwise distortion in downwash sheet is only slightly affected by
redefining the planform shape. However, caution should be exercised in
applying large amounts of smoothing since the redefined shape may provide
a poor approximation of the original planform shape.

The above discussion has been presented to identify a potential problem

that may arise in predicting the loadings on discontinuous planforms and
to suggest a method to alleviate the problem, The suggested smoothing

technique is not available within the present computer program, however,
an alternate method is suggested such that reasonable results may be ob-
tajned without redefining the planform shape.

An alternate method suggested by other authors is one of applying engineer-
ing judgement to the placement of spanwise collocation stations in regions

of planform discontinuities. The downwash distribution shown in figure 34
indicates that the distributions are only slightly affected at small dis-
tances away from the discontinuity station. The amount of distortion will

be the greatest near the centerline of a highly swept planform since this is
the location where the largest difference in the spanwise loading derivative
exists. Planforms having leading and trailing edges defined by a combination
of straight line segments for which differences in spanwise slopes are small

70



will produce even smaller distortions in the downwash description than is
observed for the centerlines station. Consequently, it is suggested that
the placement of the spanwise collocation stations (downwash chords) is
such that the stations are Tocated at least a small distance away from any
planform discontinuity station.

Although application of planform smoothing or positioning of collocation
stations may appear to be an artificial method to bypass the source of the
problem, these methods will provide reasonable results for the aerodynamic
lToadings without being overly encumbered by localized flow conditions that
contibute only in a small way to final load definitions.

Suggested Modification of Boundary Conditions w/V

From an operational standpoint, it appears that if a local linearization is
used, that is if the Tinearized boundary conditions w/V are modified to included
local velocities due to airfoil thickness the resulting theoretical pressure
distributions will simulate the physical flow conditions more accurately.
Lifting surface theory solutions using assumed mode-kernel function approach
usually provide results that correlate well with experimental results. An
example of the correlation of theoretical-experimental results is presented

for the analysis planform shown in figure 35.

-~~~ ROWS OF PRESSURE ORIFICES %

0.25 CHORD OF NACA A A
64A010 SECTIONS

NACA B4A010
SECTION

46,67

N

)
Catzan My

12,29 ~|
e 4147 ———

Figure 35.- Experimental Planform of NACA RM A51G3t (dimensions in inches)
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Chordwise pressure distributions were obtained at seven spanwise locations
as indicated in the figure. The comparisons of theoretical-experimental
results are shown in figure 36 for the pressure chord located at y/s = .831
for M = 0.80 and « = 4°.

12 F
© ~ EXPERIMENT (NACA RM AS51G31)
1.0 ———— ZERO THICKNESS BOUNDARY CONDITIONS

) .2 4

6
X /C

Figure 36.- Experimental and Zero Thickness Theoretical Pressure Distribution
at y/s = 0.831, M = 0.80, a = 4°

The resulting theoretical pressure distribution was obtained using the
standard linearized boundary conditions applicable for zero thickness 1ift-
ing surfaces. It appears that a reasonable correlation is obtained on the
average in that the theoretical distribution does approximate the experi-
mental values in an average sense over the length of the streamwise chord.
Theoretical pressures forward of the midchord are smaller than experimental
values and are greater than experimental values for stations aft of the
midchord.
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The analysis was revised using a modification on the 1ifting surface boundary
conditions such that the local velocity due to symmetrical thickness distri-
bution is used instead of applying the uniform velocity distribution of a
zero thickness 1ifting surface.

That is, the boundary condition of the integral equation was obtained from
the definition

9Z . 97
00 .1 bz l[__;l_ J ax]
“J.("Y’°) Vv 0 - V0l "o e

where zjrepresents the displacement of the surface and is a function of time(r).

22,
5};_,_, the slope of the surface at (x,y).
gé— is usually taken to be equal to the remote velocity V, and for a zero

thickness airfoil section this may be correct. However, physical experiments
are conducted on finite thickness airfoil sections having local velocities
that are not uniform over the chord length.

Consequently, the %%— term should represent the local flow velocity VLoca] at
collocation stations in making a comparison between theoretical and real

flow results.

The modified boundary conditions applicable to finite thickness airfoil sec-
tions are then defined as:
3Z.; dZ.
; A i R ]
W _(x.y,0) VLot T X VLoca]

J
VLoca] is defined as being the steady streamwise velocity distribution that

differs from V due to thickness effects only, and may be obtained from ex-
perimental results or by using the theoretical distributions of reference 17.

Theoretical results shown in figure 37 represent analyses using zero thick-
ness and finite thickness boundary conditions and it is evident that in

this case more accurate simulation of the physical flow results are obtained
using local boundary conditions that incorporate finite thickness effects.
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Theoretical pressure distributions forward of the midchord station approach
the experimental values in a better fashion than do the results using zero
thickness boundary conditions. Also, the theoretical distributions near
the trailing edge predict the change in sign in pressures as indicated in
the experimental results.

12 F
© ~— EXPERIMENT (NACA RM A51G31)
l  ~——— ZERO THICKNESS BOUNDARY CONDITIONS
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Figure 37.- Comparison of Pressure Distributions Predicted by Zero Thickness and
Finite Thickness Boundary Conditions at a Semi-Span Station y/s = 0.331,
for- M = 0.80 and o = §4°

Although no large changes in distributions are observed using modified
boundary conditions, it does appear that the physical flow conditions
are more accurately simulated and may contribute significantly to the
design of energy absorbing Stability Augmentation Systems.

A program option is available for using modified boundary conditions within
the analysis and the input data format along with limitations are given in
section “3.7.2 LIMITATIONS" of reference 4.

NASA-Langley, 1972 — 1 CR-200%




